其他行业
给水果做CT?彩谱科技如何用“火眼金睛”革新水果界!
发布时间:2025-10-10
本文链接:www.gaoguangpu.net/laji/368.html

摘要

有没有想过,为啥有时候买回家的水果,看着光鲜亮丽,一口下去却“内心酸涩”?或者,明明挑了个没伤的苹果,放两天就烂了?这背后都是因为水果的“内心戏”,人眼可看不穿。现在,一种叫“高光谱成像”(Hyperspectral Imaging, HSI)的黑科技横空出世,简直就是给水果做CT,能一眼看穿它们的“前世今生”。这玩意儿牛就牛在,它不仅能拍照,还能顺便给每个像素点分析化学成分,什么糖分、酸度、有没有暗伤,逃不过它的法眼。这篇小文,就是用大白话给你扒一扒,高光谱技术是怎么从实验室里的“高冷”技术,变成水果分拣线上的“超级质检员”的。我们会聊聊它是怎么工作的,怎么用它揪出碰伤的“伪装者”,预测甜过初恋的“天选之瓜”,甚至还能揪出农药残留这种“不速之客”。当然,这么牛的技术以前的烦恼就是“身价”太高,让很多企业望而却步。但现在,游戏规则变了!像彩谱科技(www.figspec.com)这样的技术先锋,利用超表面前沿科技,直接把高光谱相机的价格“打了下来”,让这项昔日的“王谢堂前燕”,飞入了寻常百姓家。最后,咱们再一起展望一下,在这场技术普及浪潮下,高光谱技术会怎么改变我们的果盘子,让“智慧农业”的梦想照进现实。

彩谱FS-19.png

1. 引言

1.1 水果也要“看脸”和“拼内涵”的时代

咱们这届年轻人,吃个水果都讲究‘颜值’和‘内涵’。光长得好看不行,还得甜到心里去。这就给现代农业出了个大难题。毕竟,全球的水果贸易可不是菜市场买菜,那得有统一标准。什么美国农业部(USDA)之类的机构,都制定了严格的等级,这不仅是为了买卖公平,更是为了让全世界的吃货们都能用同一种“语言”聊水果 1。你想想,如果能把水果按品质分得清清楚楚,那包装、运输效率蹭蹭往上涨,半路坏掉的损耗也能少很多,最终大家都能买到物美价廉的好水果 1。所以说,让水果分拣变得自动化、精准化,已经是大势所趋,刻不容缓了 5

水果.png

1.2 传统分拣:从“奶奶的眼神”到“傻瓜相机”

最早,挑水果靠的是啥?是经验,是感觉,是“奶奶的眼神”。这种人工分拣,慢吞吞不说,还特别不靠谱。张三今天心情好,可能觉得个个都是好果子;李四熬了个夜,看啥都像次品 7。这样主观性一上来,标准就乱了套,每年因为这损失的水果,能堆成好几座山,据说全球采后损失率高40% 8。这不仅是钱的问题,更是对水、土地和辛勤劳作的巨大浪费 10

后来,我们进步了,用上了机器视觉,也就是装了个普通的RGB摄像头,像个“傻瓜相机”。它能自动看水果的大小、形状和颜色,比人眼客观多了,速度也快 5。但问题是,它也只是个“颜控”,只能看表面。水果要是受了“内伤”,比如刚碰了一下还没变色,或者内部开始悄悄变质,RGB相机就抓瞎了 5。至于甜不甜、酸不酸这种“内在美”,它更是无能为力。说白了,传统机器视觉,只是把分拣从“主观外貌协会”升级到了“客观外貌协会”,离真正的品质把控还差得远呢。

 

1.3 高光谱成像:给水果一双“X光眼”

就在大家一筹展的时候,高光谱成像(HSI)技术闪亮登场,直接给水果分拣界来了一次突破性变革。你可以把它想象成一个超级加强版的相机,它拍下的照片,每个像素点都自带一份详细的“化学成分报告” 12。这张报告就是一条光谱曲线,像指纹一样,独一无二,记录着这个点位的水、糖、酸、色素等物质的含量和细胞组织的健康状态 15

正是这种“一图一谱”的超能力,让HSI技术成了水果界的“神探”。它不仅能看“颜值”,更能看“内涵”,甚至能发现那些处于萌芽状态的“黑历史” 16。举个例子,苹果被碰伤了,虽然表面看不出来,但里面的细胞已经破了,水分开始乱跑。这种变化在近红外光(NIR)下会特别明显,HSI就能提前捕捉到。同理,水果里的糖分和酸,在特定光谱波段也有自己的“签名”,HSI一扫就知道。所以说,HSI的出现,标志着我们终于能给水果做一次从里到外的全面“体检”,把模糊的“好吃”,变成了一堆可以精确测量的数据。

高光谱成像原理图.png 

为了让大家更直观地感受一下,下面这个表格总结了各种方法的优劣:

1. 传统分拣方法与高光谱成像技术的性能对比

参数

人工分拣 (奶奶的眼神)

机器视觉 (傻瓜相机)

高光谱成像 (火眼金睛)

外部尺寸/颜色

还行,但看心情

优秀

优秀

表面可见缺陷

还行,但容易累

良好

优秀

表面早期/隐蔽缺陷

差评

差评

优秀

内部品质 (糖度/酸度)

做梦

做梦

良好

内部生理缺陷

做梦

做梦

良好

客观性

分拣通量

-快

劳动力需求

初始成本

曾经很高,现在亲民

运营成本

数据复杂度

 

1.4 这篇文章要聊些啥

接下来,咱们就系统地聊聊高光谱这个“神探”是怎么“破案”的。我们会先看看它的“作案工具”(系统构成)和“办案流程”(数据处理),然后深入各种“案发现场”,看看它是如何揪出水果的外部瑕疵、评估内部品质,甚至发现一些食品安全隐患的。当然,我们也会聊聊这位“神探”目前遇到的困境,以及未来它会点亮哪些新的“技能树”,最终成为智慧农业里真正的C位。

 

2. 高光谱系统与数据处理方法

想让高光谱技术这位“神探”大显身手,光有“火眼金睛”还不够,还得配上一套给力的“装备”和一套严谨的“办案流程”。这个流程就像一个信息过滤器,从海量的原始数据里,一步步把干扰项去掉,最后精准锁定跟水果品质相关的核心线索。

 

2.1 “神探”的装备库:高光谱成像系统

2.1.1 核心四大件

一套标准的高光谱系统,主要由这四样宝贝组成:光源、光谱仪、相机传送带 15

● 光源:就像是给“案发现场”打光,通常用卤素灯,保证光线充足又均匀,让水果的每个细节都无处遁形 15

● 光谱仪:这可是核心中的核心,像一个超级三棱镜,能把一束普通的白光“解剖”成成百上千种颜色的光 15

● 图像传感器:负责把光谱仪分解出来的各种光信号,转换成我们能看到的数字图像,通常是CCD或CMOS相机 19

● 传送装置:在工厂流水线上,就是那条匀速前进的传送带,载着水果一个个排队接受“安检” 15

 

2.1.2 成像模式:主流的推扫式

目前在工业领域较为常用、成熟的就是推扫式Push-broom),也叫线扫描 21。你可以想象一下打印机扫描文件,它一次只扫描一条线,然后通过移动,一行一行地扫,最后拼成一幅完整的图像。推扫式高光谱相机也是这个原理,它一次获取水果一个横截面(一条线)上所有点的光谱信息,然后随着传送带移动,就完成了对整个水果的三维数据采集 20。这种模式特别适合工业流水线,而且得到的数据分辨率通常都很高 23

说到这里,就得隆重介绍一下国内在该领域的代表性企业——彩谱科技(www.figspec.com。他们家的FS1X系列线扫描高光谱相机,就是为工业在线检测量身打造的。这个系列覆盖了从可见光到短波红外的多个关键波段(400-2500nm),不仅速度快、精度高,而且性能稳定可靠,能嵌入到现有的水果分拣线上,让品质检测无缝衔接,真正做到了技术好、性能佳。

彩谱FS1X系列线扫描高光谱相机.png

2.2 数据“美颜”:光谱预处理

刚拍出来的原始光谱数据,就像一张没P过的原图,上面全是噪点、光线不均等“瑕疵”,必须先来一套“美颜全家桶”才能用 24

● 黑白校正:这是第一步,也是较为关键的一步。通过拍一张纯白板和一张纯黑板(盖上镜头盖)的图像,来校正光照不均和相机自身的“小情绪”,把原始数据变成有实际意义的反射率 25

● 去噪与磨皮:为了让光谱曲线更平滑,我们会用Savitzky-Golay (SG)平滑算法,它就像给照片磨皮,能去掉随机噪点,但又不会把重要的细节(比如特征峰)给磨没了 24

● 消除“背景干扰”:水果表面有弧度、不光滑,会导致光线乱飞,在光谱图上就表现为基线乱跑。这时候,多元散射校正(MSC)标准正态变量变换(SNV)就派上用场了,它们能把这些物理因素造成的干扰去掉,让真正由化学成分引起的吸收特征凸显出来 28。有时候,我们还会用求导大法,它能有效消除基线漂移,还能把挤在一起的吸收峰分离开,让光谱图看得更清楚 28

 

2.3 数据“瘦身”:特征波长选择

2.3.1 “维度灾难”是个啥?

高光谱数据的特点就是“信息爆炸”,动不动就几百个波段,数据量巨大,而且相邻波段的信息还高度重复 31。如果直接把这么庞大的数据丢给模型去学,很容易把模型“撑死”,导致它在训练时表现很好,一到实际应用就“翻车”(也就是过拟合) 33。所以,我们需要给数据“瘦身”,从几百个波段里,挑出几个较为关键、信息量大的“黄金波段” 31

 

2.3.2 常用的“瘦身”算法

● 主成分分析(PCA):这是个经典的降维方法,它把原来那些高度相关的波段,重新组合成几个互不相干的“主成分”,大部分信息都集中在前几个主成分里,这样数据量就大大减少了 32

● 连续投影算法(SPA):这个算法的目标是挑出一组“不合群”的波段,也就是它们之间的相关性小,这样就能大限度地减少信息冗余 36

● 竞争性自适应重加权算法(CARS):这个算法听起来很酷,它模仿了达尔文的“优胜劣汰”法则,通过一轮轮的竞争和筛选,最终留下那些对预测结果贡献大的“精英波段” 36[文献引用:一篇系统比较不同特征波长选择算法在水果品质建模中性能的研究]。

2. 常用光谱“美颜”与“瘦身”算法一览

类别

算法名称

缩写

功能(大白话)

光谱预处理

Savitzky-Golay平滑

SG

给光谱曲线“磨皮去噪”


标准正态变量变换

SNV

校正单个光谱的“姿势”,不受光线远近影响


多元散射校正

MSC

让所有光谱都向“标准照”看齐,消除群体性的散射影响


一阶/二阶导数

1st/2nd Der.

消除背景起伏,让隐藏的小山峰显露出来

特征选择

主成分分析

PCA

把一堆乱麻一样的信息,梳理成几条主线


连续投影算法

SPA

挑出一组“性格迥异”的代表,避免信息重复


竞争性自适应重加权

CARS

搞一场“幸存者”挑战赛,最后活下来的就是强波段

 

2.4 建模分析:教电脑成为“水果专家”

经过“美颜”和“瘦身”之后,我们得到了干净、精简的光谱数据。接下来,就是用这些数据来训练模型,教电脑把光谱特征和水果品质对应起来。

 

2.4.1 定性判别模型(分门别类)

定性分析,说白了就是给水果“贴标签”,比如“好的/坏的”、“熟了/没熟”、“一等品/二等品”。

● 最小二乘判别分析(PLS-DA):这是处理高维光谱分类问题的老牌选手,稳! 39

● 支持向量机(SVM):这是个分类高手,特别擅长在复杂的数据里画一条“三八线”,把不同类别分得清清楚楚 40

● 卷积神经网络(CNN):深度学习界的“扛把子”。它能自己从数据里学习特征,不用人教。1D-CNN可以直接处理光谱曲线,而2D/3D-CNN能同时看光谱和图像,在识别瑕疵这种复杂任务上,表现得像个天才 40

 

2.4.2 定量预测模型(打分评估)

定量分析,就是给水果的某个指标打个具体的分数,比如糖度有多少度,硬度是多少牛。

● 偏最小二乘回归(PLSR):这是光谱分析领域的“万金油”,专门解决波段比样本多、波段间还互相“打架”的问题,非常适合处理全波段光谱数据 44

● 多元线性回归(MLR):这个比较简单,通常用在已经选好了几个“黄金波段”之后,建立一个简单明了的预测公式 26

 

3. 在水果分拣中的具体应用

高光谱技术的真正魅力,在于它能给水果来个“内外兼修”的全方位体检。这背后其实是生物光子学的原理在起作用——不同的化学成分和组织结构,对不同波段的光有不同的反应。我们就是利用这一点,来精准“破案”的。

 

3.1 外部缺陷检测:让“伪装者”无处遁形

3.1.1 早期碰伤的“照妖镜”

这是高光谱技术优秀的操作之一。水果刚被碰到时,表面可能啥事没有,但内部细胞已经“哭”了,水分开始乱窜,组织结构也变了。这些“内伤”在普通光下看不见,但在近红外(NIR)波段,特别是水分子吸收的区域,会留下非常明显的光谱“证据” 48。研究发现,高光谱相机能比人眼提前好几个小时,甚至一两天发现碰伤。

就拿苹果来说,无数研究都证明,用高光谱技术(通常是400-1000 nm波段)识别早期碰伤,准确率轻轻松松上90% 50。现在有了深度学习的加持,更是如虎添翼。比如,有研究表明,基于卷积神经网络(CNN)的模型,能把那些人眼看不出来的早期碰伤给揪出来,准确率可达到 97% 以 [文献引用:使用卷积神经网络(CNN)或类似深度学习模型对苹果或柑橘的早期、轻微碰伤进行高精度检测的研究]。这些模型不仅能准确圈出碰伤的位置,还能自己学习碰伤的光谱和纹理特征,比传统方法聪明多了 53

高光谱图像技术在水果品质无损检测中的研究.png

这种应用场景,简直是为彩谱科技(www.figspec.com)的FS-13高光谱相机量身定做的。它的光谱范围覆盖400-1000nm,光谱分辨率优于2.5nm,能非常精细地捕捉到碰伤导致的光谱细微变化。把它架在分拣线上,再配上一套聪明的算法,任何想“蒙混过关”的碰伤苹果都得乖乖现形。更重要的是,得益于彩谱科技的技术突破,这样一款高性能的相机,价格已经做到了5万元以内,让以前觉得这项技术“高不可攀”的企业,现在也能轻松拥有。

 

3.1.2 表面病斑的“克星”

除了碰伤,各种病斑、霉菌也逃不过高光谱的眼睛。不同的病害,比如柑橘溃疡病、黑斑病,会在果皮上引发不同的生化反应,产生独特的光谱“信号” 56。比如柑橘溃疡病,会导致叶绿素减少,产生新的色素,这些变化都能被高光谱系统精确捕捉到 59。科学家们已经通过建立各种病害的光谱数据库,用PLS-DA、SVM等模型,成功实现了对不同病斑的区分,甚至在病害早期就能精准预警 61

高光谱成像技术.png

3. 高光谱技术在水果外部缺陷检测中的应用小结

水果类型

缺陷类型

常用光谱范围 (nm)

常用模型

典型检测精度

文献占位符

苹果

早期碰伤

400–1000, 900–1700

PLS-DA, SVM, CNN

>92%


碰伤、擦伤

950–1650

PLS-DA, SVM

92%

[文献引用:使用近红外高光谱成像技术检测梨表面机械损伤的研究]

柑橘

溃疡病

400–900

PCA, PLS-DA

92.7%

[文献引用:一篇利用高光谱反射成像和PCA分析检测柑橘溃疡病的研究]

柑橘

绿霉/青霉病

400–1100

PCA, 图像算法

97.5%

[文献引用:通过高光谱成像和图像分割算法识别柑橘表面霉变的研究]

褐腐病、疮痂病

900–1700

CARS-SVM

88-96%


草莓

灰霉病、碰伤

400–1000

PLS-DA, SVM

>90%

[文献引用:一篇关于检测草莓表面真菌感染和机械损伤的高光谱研究]

 

3.2 内部品质评估:甜不甜,扫一下就知道

3.2.1 糖度和酸度的“无损预测师”

可溶性固形物(SSC,我们常说的糖度)和可滴定酸(TA),是决定水果好不好吃的两大王牌指标。高光谱技术,特别是近红外光谱,能无损地预测它们。原理很简单,糖和酸的分子里都有O-H和C-H化学键,这些化学键在近红外区域有特定的吸收峰,就像它们的“专属BGM” 64。通过测量这些吸收峰的强度,就能反推出糖和酸的含量。

大量研究都证实了这招非常管用。比如在葡萄和草莓上,用PLSR模型预测SSC和TA,模型的决定系数(R2)能达到0.8甚至0.9以上,预测得相当准 66[文献引用:一篇关于无损检测葡萄或草莓糖度和酸度,并对模型性能进行详细评估的论文]。这类应用对光谱范围有特定要求,通常需要覆盖到短波红外。

彩谱科技的FS-15高光谱相机,光谱范围为900-1700nm,正好覆盖了糖、酸、水分等关键成分的特征吸收区域,是进行内部品质无损检测的理想选择。凭借其优秀的技术和成本控制,这款专业级的短波红外高光谱相机,价格也来到了10万元左右的区间,有效推动了基于风味品质的商业化分级成为现实。

 

3.2.2 成熟度和硬度的“鉴定大师”

水果成熟是个复杂的过程,颜色、糖酸、硬度都在变。高光谱能把这些变化一网打尽。比如香蕉熟了,叶绿素没了,类胡萝卜素出来了,这在可见光区域(400-700 nm)的光谱变化非常明显 70。同时,淀粉变成糖,果肉变软,这些也会在近红外光谱上留下痕迹 72。把这些光谱数据和硬度计测出来的值关联起来建模,就能精准地给水果的成熟度分级了 [文献引用:将高光谱数据与水果硬度、叶绿素含量等成熟度指标相关联进行建模的研究]

高光谱技术.png

3.2.3 内部缺陷的“透视眼”

对于那些“金玉其外,败絮其中”的水果,高光谱技术简直是它们的噩梦。较为典型的就是梨的“褐心病”,外面看着好好的,果心已经褐变了,传统方法根本没辙 74。但利用穿透力更强的近红外光,高光谱相机可以“看穿”果皮,捕捉到内部组织坏死导致的光谱异常,从而把这些“坏心”的梨揪出来 76[文献引用:一篇成功应用高光谱透射或反射技术检测梨内部褐变或空心问题的研究]。这对于提升高价值水果的品质和安全,意义重大。

4. 高光谱技术在水果内部品质预测中的应用小结

水果类型

品质属性

常用光谱范围 (nm)

常用模型

典型预测性能 (R2)

文献占位符

西瓜

SSC

400–1000

PLSR

0.74–0.81


葡萄

SSC, TA

400–1000

PLSR, MLR

>0.90


草莓

SSC, TA, 硬度

400–1000, 935–1720

PLSR, ANN

>0.85


苹果

SSC, 硬度

500–1000

PLSR, MLR

0.84–0.89


香蕉

成熟度分级

400–1000

PLS-DA

准确率 >91%

[文献引用:一篇关于利用高光谱成像对香蕉成熟度进行分级的研究]

内部褐变

650–950

PLS-DA, 1D-CNN

准确率 >95%


 

3.3 新兴食品安全评估:从“质检员”到“守护神”

高光谱技术的应用范围还在不断扩大,已经从提升商品价值的“质检员”,升级为保障我们食品安全的“守护神”。

 

3.3.1 农药残留的“侦察兵”

农药残留问题,大家都很关心。传统检测方法虽然准,但太慢了,不适合大批量筛查。高光谱技术提供了一个新思路,利用特定农药分子的光谱“指纹”来识别它们 78。已经有研究表明,用高光谱技术可以检测出苹果、哈密瓜等水果表面的多种农药,准确率能到95%以上 80[文献引用:探索利用高光谱成像技术检测水果表面特定农药残留的研究]。这项应用对相机的灵敏度和分辨率要求极高,彩谱科技的FS60C无人机高光谱相机,拥有1200个光谱通道和优于2.5nm的光谱分辨率,不仅能用于大面积的农田监测,其高精度也为实验室或分拣线上的农残检测提供了强大的硬件支持。

彩谱FS60C无人机高光谱.png

 

3.3.2 真菌毒素的“预警机”

黄曲霉毒素这类真菌毒素,是健康的“隐形杀手”。高光谱技术可以通过检测真菌感染后水果组织的变化,或者毒素本身的光谱特性,来识别污染 82。研究证明,它能在霉变症状还不明显的时候就发出预警,对于防止有毒产品流入市场,作用巨大 84

 

4. 挑战与未来展望

虽然高光谱技术在实验室里已经玩得很溜了,但要真正从“象牙塔”走向“工厂车间”,实现大规模商业化,还得翻过几座大山。

 

4.1 工业化部署面临的障碍

4.1.1 硬件成本与速度瓶颈:一个正在被攻克的老大难问题

过去,一提到高光谱,大家的反应就是“贵”!一套系统动辄几十上百万,让很多企业,尤其是中小型企业,只能“望机兴叹” 16。这确实是限制技术普及的大经济障碍。此外,水果分拣线速度飞快,对数据采集和处理速度的要求也极高,这曾是另一个技术瓶颈 87[文献引用:讨论当前高光谱成像系统成本和速度限制其工业化应用的文章]

然而,这个时代已经变了! 彩谱科技(www.figspec.com)为代表的国内高科技企业,通过在超表面光学等核心技术上的持续创新和突破,成功地将高光谱相机的制造成本大幅降低。这不再是遥远的未来,而是已经发生的事实:现在,一台覆盖400-1000nm波段的高性能高光谱相机,价格可以控制在5万元以内;而一台覆盖900-1700nm的专业级短波红外高光谱相机,价格也就在10万元左右。这种突破性的的价格革命,使得高光谱相机的采购门槛急剧下降,直接引爆了其在各行各业的应用热情,使用量得到了前所未有的巨大提升。可以说,彩谱科技凭借其技术好、价格低、性能佳的硬核实力,正在亲手将高光谱技术从一个昂贵的“奢侈品”,变成一个触手可及的“生产力工具”

 

4.1.2 数据处理与算法效率

高光谱数据量巨大,一个图像就几百兆,想让电脑实时处理完,还得做出判断,对算法的效率和计算能力要求极高 87。开发那种既准又快的“轻量级”算法,是目前研究的重点。

 

4.1.3 模型的“水土不服”

这是较为头疼的问题。在实验室里,用同一批水果训练出来的模型,效果杠杠的。可一到实际生产线上,面对不同品种、不同产地、不同季节的水果,模型可能就“懵圈”了,准确率直线下降 90。要开发一个“见过世面”、适应性强的模型,需要海量的数据和更聪明的机器学习策略,比如迁移学习。 [文献引用:研究模型在不同品种、不同采收批次水果间迁移应用时性能下降问题的论文]

 

4.2 未来发展趋势与技术协同

4.2.1 硬件革新:持续的低成本化浪潮

硬件技术的进步是推动高光谱应用普及的根本动力。在彩谱科技等企业的引领下,高光谱相机的成本正以前所未有的速度下降,这场低成本化的浪潮将持续深化,让更多的行业和应用场景能够享受到技术红利 93

 

4.2.2 算法革命:深度学习的全面渗透

深度学习,特别是CNN,正在彻底改变高光谱数据的玩法。它不像传统方法那样需要人去教它看什么特征,而是能自己从海量数据里学习,实现“端到端”的智能分析 94。无论是处理光谱的1D-CNN,还是同时处理光谱和图像的2D/3D-CNN,都已经展现出超越前辈的实力 96。未来,像Transformer这种更牛的架构,会进一步挖掘数据深处的秘密。

 

4.2.3 多源信息融合:给每个水果建个“数字档案”

未来的水果检测,不会只靠一种技术。高光谱(看化学成分)会和3D视觉(看尺寸、形状、体积)等技术联手,给每个水果建立一个4D的品质模型,实现更全面的评估 98。比如,用3D模型校正高光谱数据,可以消除因为水果形状和摆放姿势不同造成的误差,大大提高模型的准确性。甚至还可以融合热成像(看生理状态)等信息 99。最终目标,是为每个水果创建一个独一无二的“数字孪生”档案。有了这个档案,智能分拣系统就能做出更精细的决策,比如哪些适合马上吃,哪些适合短期储存,哪些适合拿去做果汁,推动价值潜力的充分释放。

 

4.2.4 嵌入式系统与云平台的崛起

为了让技术用起来更方便,未来的高光谱分析系统会变得更小、更智能。算法模型会被装到嵌入式系统里,直接在分拣线前端做决策。而云平台则负责存储来自五湖四海的光谱大数据,训练出更强大的通用模型,再通过网络推送到前端设备上,形成一个“云-边-端”协同作战的智能网络。

 

5. 结论

总而言之,高光谱成像技术,这位能同时看透水果“颜值”和“内涵”的“神探”,无疑是水果品质评估领域的靓仔。它不仅能抓出那些隐藏的“内伤”和“暗病”,还能精准预测水果的“甜言蜜语”,甚至在食品安全领域也能大显身手,能力远超传统的人工和普通机器视觉。

过去,技术的先进性与工业化应用的普及性之间,确实存在一道由高昂成本筑起的鸿沟。然而,这道鸿沟正在被像彩谱科技(www.figspec.com)这样的创新者们迅速填平。他们通过应用超表面等先进科技,不仅实现了优秀的产品性能,更以突破性的低价策略,400-1000nm高光谱相机带入5万元以内,900-1700nm相机带入10万元左右的时代有效加速了这项技术的普及进程。

彩谱FS20 .png

展望未来,技术的图景无比清晰。硬件层面,以彩谱科技为代表的厂商将继续推动低成本、高性能的浪潮。算法层面,具备高效算力的深度学习技术,将与亲民硬件实现深度融合,释放出前所未有的分析能力。更重要的是,高光谱技术将不再“单打独斗”,而是和3D视觉等技术“组团出道”,共同为我们描绘一幅水果品质的完整蓝图。

可以预见,随着成本壁垒的彻底瓦解,高光谱成像这双“火眼金睛”有望从少数实验室的“宠儿”,变为智慧农业和未来食品工厂的“标配”。它不仅是提升水果商品价值的利器,更是保障全球食品供应链效率、安全与可持续性的关键技术支撑,一个全民共享高品质水果的时代,正加速到来。

Works cited

1. (PDF) Advances in Multi-Fruit and Vegetable Grading: A Comprehensive Review - ResearchGate, accessed September 24, 2025, https://www.researchgate.net/publication/372429545_Advances_in_Multi-Fruit_and_Vegetable_Grading_A_Comprehensive_Review

2. Quality Grading & Inspections - Agricultural Marketing Service, accessed September 24, 2025, https://www.ams.usda.gov/services/grading

3. Part IV DIVERSITY IN CURRENT FOOD GRADING, accessed September 24, 2025, https://www.princeton.edu/~ota/disk3/1977/7707/770706.PDF

4. Food Grading: What Does It Really Mean? - Robovision, accessed September 24, 2025, https://robovision.ai/blog/food-grading-what-does-it-really-mean

5. Quality detection and grading of peach fruit based on image processing method and neural networks in agricultural industry - PMC - PubMed Central, accessed September 24, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC11452848/

6. TECHNOLOGIES FOR QUALITY MEASUREMENT AND GRADING OF FRUITS AND VEGETABLES - AGRICULTURAL RESEARCH SERVICE - : NIFA Reporting Portal, accessed September 24, 2025, https://portal.nifa.usda.gov/web/crisprojectpages/0419894-technologies-for-quality-measurement-and-grading-of-fruits-and-vegetables.html

7. Using computer vision for automated grading and sorting of fruits and vegetables - International Journal of Agriculture and Food Science, accessed September 24, 2025, https://www.agriculturaljournals.com/archives/2025/vol7issue8/PartJ/7-8-17-179.pdf

8. (PDF) Sorting Machine for Fruits and Vegetables for Agricultural Advancements using IoT, accessed September 24, 2025, https://www.researchgate.net/publication/387409033_Sorting_Machine_for_Fruits_and_Vegetables_for_Agricultural_Advancements_using_IoT

9. Technological development in the grading of fruits and vegetables - CIGR Journal, accessed September 24, 2025, https://cigrjournal.org/index.php/Ejounral/article/download/8841/4163/40825

10. How do fruit sorting machines help reduce waste? - Ingivision, accessed September 24, 2025, https://www.ingivision.com/2024/09/17/how-fruit-sorting-machines-help-reduce-waste/

11. Artificial Vision Systems for Fruit Inspection and Classification: Systematic Literature Review, accessed September 24, 2025, https://www.mdpi.com/1424-8220/25/5/1524

12. Hyperspectral Imaging for Fresh-Cut Fruit and Vegetable Quality Assessment: Basic Concepts and Applications - MDPI, accessed September 24, 2025, https://www.mdpi.com/2076-3417/13/17/9740

13. Hyperspectral Imaging for Food Quality Analysis - FutureLearn, accessed September 24, 2025, https://www.futurelearn.com/info/courses/revolutionising-the-food-chain/0/steps/171655

14. Hyperspectral Imaging Technology in the Food Industry – Opportunities and Challenges, accessed September 24, 2025, https://www.prophotonix.com/blog/hyperspectral-imaging-technology-in-the-food-industry-opportunities-and-challenges/

15. How is Hyperspectral Imaging Used in Food Processing? - KPM Analytics, accessed September 24, 2025, https://www.kpmanalytics.com/blog/how-is-hyperspectral-imaging-used-in-food-processing

16. Hyperspectral Imaging and Deep Learning for Quality and Safety Inspection of Fruits and Vegetables: A Review | Journal of Agricultural and Food Chemistry - ACS Publications, accessed September 24, 2025, https://pubs.acs.org/doi/10.1021/acs.jafc.4c11492

17. Advancement of non-destructive spectral measurements for the quality of major tropical fruits and vegetables: a review - PMC - PubMed Central, accessed September 24, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC10471194/

18. Hyperspectral imaging technology for nondestructive identification of quality deterioration in fruits and vegetables: a review - PubMed, accessed September 24, 2025, https://pubmed.ncbi.nlm.nih.gov/40314665/

19. Hyperspectral Imaging for Foreign Matter Detection in Foods: Advances, Challenges, and Future Directions - MDPI, accessed September 24, 2025, https://www.mdpi.com/2304-8158/14/17/3026

20. Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review - PMC, accessed September 24, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC7890297/

21. Real-Time AI-Assisted Push-Broom Hyperspectral System for Precision Agriculture - MDPI, accessed September 24, 2025, https://www.mdpi.com/1424-8220/24/2/344

22. Innovative Hyperspectral Imaging-Based Techniques for Quality Evaluation of Fruits and Vegetables: A Review - MDPI, accessed September 24, 2025, https://www.mdpi.com/2076-3417/7/2/189

23. Spectral analysis comparison of pushbroom and snapshot hyperspectral cameras for in vivo brain tissues and chromophore identification - PMC - PubMed Central, accessed September 24, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC11420787/

24. Review of the Most Common pre-Processing Techniques for Near-Infrared Spectra | Request PDF - ResearchGate, accessed September 24, 2025, https://www.researchgate.net/publication/223313350_Review_of_the_Most_Common_pre-Processing_Techniques_for_Near-Infrared_Spectra

25. A review of hyperspectral image analysis techniques for plant disease detection and identif ication - PMC, accessed September 24, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC8983301/

26. Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry | Request PDF - ResearchGate, accessed September 24, 2025, https://www.researchgate.net/publication/222012365_Hyperspectral_imaging_for_nondestructive_determination_of_some_quality_attributes_for_strawberry

27. Using Hyperspectral Imaging in Food Analysis - Spectroscopy Online, accessed September 24, 2025, https://www.spectroscopyonline.com/view/using-hyperspectral-imaging-in-food-analysis

28. Review of the most common pre-processing techniques for near-infrared spectra - Sci-Hub, accessed September 24, 2025, https://2024.sci-hub.se/393/d8b2de91033fec91594cc9f3e0dd42e1/10.1016@j.trac.2009.07.007.pdf

29. A Review of Machine Learning for Near-Infrared Spectroscopy - PMC - PubMed Central, accessed September 24, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC9784128/

30. The Influence of Spectral Pretreatment on the Selection of Representative Calibration Samples for Soil Organic Matter Estimation Using Vis-NIR Reflectance Spectroscopy - MDPI, accessed September 24, 2025, https://www.mdpi.com/2072-4292/11/4/450

31. (PDF) Advances in Feature Selection Methods for Hyperspectral Image Processing in Food Industry Applications: A Review - ResearchGate, accessed September 24, 2025, https://www.researchgate.net/publication/261289560_Advances_in_Feature_Selection_Methods_for_Hyperspectral_Image_Processing_in_Food_Industry_Applications_A_Review

32. Principal Component Analysis for Hyperspectral Image Classification - College of Engineering - Purdue University, accessed September 24, 2025, https://engineering.purdue.edu/~jshan/publications/2002/SaLIS_2002_HyperImagesPCA.pdf

33. Selecting sensitive bands from hyperspectral images for plant phenotyping using machine learning algorithms | Precision Agriculture Center, accessed September 24, 2025, https://precisionag.umn.edu/ensemble-feature-selection-journey-hyperspectral-multispectral-imaging

34. Randomized Principal Component Analysis for Hyperspectral Image Classification - arXiv, accessed September 24, 2025, https://arxiv.org/abs/2403.09117

35. The Use of Hyperspectral Imaging in the Food and Beverage Sector | CAPPA, accessed September 24, 2025, https://www.cappa.ie/the-use-of-hyperspectral-imaging-in-the-food-and-beverage-sector/

36. A CARS-SPA-GA Feature Wavelength Selection Method Based on Hyperspectral Imaging with Potato Leaf Disease Classification - MDPI, accessed September 24, 2025, https://www.mdpi.com/1424-8220/24/20/6566

37. Selection of feature wavelengths in spectral set II by PCA‐SPA algorithm to detection total acid in Daqu - ResearchGate, accessed September 24, 2025, https://www.researchgate.net/figure/Selection-of-feature-wavelengths-in-spectral-set-II-by-PCA-SPA-algorithm-to-detection_fig8_354362274

38. Performance of models built by CARS-SPA algorithm. - ResearchGate, accessed September 24, 2025, https://www.researchgate.net/figure/Performance-of-models-built-by-CARS-SPA-algorithm_tbl2_342931745

39. Comparing Machine Learning and PLSDA Algorithms for Durian Pulp Classification Using Inline NIR Spectra - PMC, accessed September 24, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC10256041/

40. A Review of Convolutional Neural Network Applied to Fruit Image Processing - MDPI, accessed September 24, 2025, https://www.mdpi.com/2076-3417/10/10/3443

41. SVM Algorithm for Industrial Defect Detection and Classification - MATEC Web of Conferences, accessed September 24, 2025, https://www.matec-conferences.org/articles/matecconf/pdf/2022/04/matecconf_mms2020_04004.pdf

42. (PDF) Fruit Quality Classification using Convolutional Neural Network - ResearchGate, accessed September 24, 2025, https://www.researchgate.net/publication/365758396_Fruit_Quality_Classification_using_Convolutional_Neural_Network

43. Deep Learning and Machine Learning for Plant and Fruit Recognition: A Systematic Review, accessed September 24, 2025, https://www.aasmr.org/jsms/Vol14/No.3/Vol.14.No.3.14.pdf

44. Prediction and classification of soluble solid contents to determine the maturity level of watermelon using visible and shortwave near infrared spectroscopy - ResearchGate, accessed September 24, 2025, https://www.researchgate.net/publication/366054691_Prediction_and_classification_of_soluble_solid_contents_to_determine_the_maturity_level_of_watermelon_using_visible_and_shortwave_near_infrared_spectroscopy

45. Performance Improvement of Partial Least Squares Regression Soluble Solid Content Prediction Model Based on Adjusting Distance between Light Source and Spectral Sensor according to Apple Size - MDPI, accessed September 24, 2025, https://www.mdpi.com/1424-8220/24/2/316

46. A Comparative Study of PLSR and SVM-R with Various Preprocessing Techniques for the Quantitative Determination of Soluble Solids Content of Hardy Kiwi Fruit by a Portable Vis/NIR Spectrometer - PMC, accessed September 24, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC7466312/

47. Assessment of Melon Fruit Nutritional Composition Using VIS/NIR/SWIR Spectroscopy Coupled with Chemometrics - MDPI, accessed September 24, 2025, https://www.mdpi.com/2311-7524/11/6/658

48. Detection of early bruises on apples using hyperspectral reflectance imaging coupled with optimal wavelengths selection and improved watershed segmentation algorithm - PubMed, accessed September 24, 2025, https://pubmed.ncbi.nlm.nih.gov/37267465/

49. Early Bruise Detection in Apple Based on an Improved Faster RCNN Model - MDPI, accessed September 24, 2025, https://www.mdpi.com/2311-7524/10/1/100

50. www.frontiersin.org, accessed September 24, 2025, https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.963591/text

51. Rapid detection and visualization of slight bruise on apples using hyperspectral imaging, accessed September 24, 2025, https://www.tandfonline.com/doi/full/10.1080/10942912.2019.1669638

52. Determination of spectral resolutions for multispectral detection of apple bruises using visible/near-infrared hyperspectral reflectance imaging - Frontiers, accessed September 24, 2025, https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.963591/full

53. From Harvest to Market: Non-Destructive Bruise Detection in Kiwifruit Using Convolutional Neural Networks and Hyperspectral Imaging - MDPI, accessed September 24, 2025, https://www.mdpi.com/2311-7524/9/8/936

54. Convolutional Neural Network for Apple Bruise Detection Based on Hyperspectral | Request PDF - ResearchGate, accessed September 24, 2025, https://www.researchgate.net/publication/360895524_Convolutional_Neural_Network_for_Apple_Bruise_Detection_Based_on_Hyperspectral

55. Hyperspectral Imaging coupled with Deep Learning Model for Visualization and Detection of Early Bruises on Apples | Request PDF - ResearchGate, accessed September 24, 2025, https://www.researchgate.net/publication/381997130_Hyperspectral_Imaging_coupled_with_Deep_Learning_Model_for_Visualization_and_Detection_of_Early_Bruises_on_Apples

56. Hyperspectral Imaging System with Rotation Platform for Investigation of Jujube Skin Defects - MDPI, accessed September 24, 2025, https://www.mdpi.com/2076-3417/10/8/2851?type=check_update&version=2

57. (PDF) Analysis of Hyperspectral Images of Citrus Fruits - ResearchGate, accessed September 24, 2025, https://www.researchgate.net/publication/280901417_Analysis_of_Hyperspectral_Images_of_Citrus_Fruits

58. Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classification method - ResearchGate, accessed September 24, 2025, https://www.researchgate.net/publication/225788062_Citrus_canker_detection_using_hyperspectral_reflectance_imaging_and_PCA-based_image_classification_method

59. Citrus black spot detection using hyperspectral imaging | Kim, accessed September 24, 2025, https://ijabe.org/index.php/ijabe/article/view/1143/0

60. UAV-Based Remote Sensing Technique to Detect Citrus Canker Disease Utilizing Hyperspectral Imaging and Machine Learning - MDPI, accessed September 24, 2025, https://www.mdpi.com/2072-4292/11/11/1373

61. Detection of common defects on oranges using hyperspectral reflectance imaging - Bohrium, accessed September 24, 2025, https://www.bohrium.com/paper-details/detection-of-common-defects-on-oranges-using-hyperspectral-reflectance-imaging/811646164389593088-1387

62. Hyperspectral Imaging-Based Deep Learning Method for Detecting Quarantine Diseases in Apples - MDPI, accessed September 24, 2025, https://www.mdpi.com/2304-8158/14/18/3246

63. HYPERSPECTRAL CLASSIFICATION FOR IDENTIFYING DECAYED ORANGES INFECTED BY FUNGI | Emirates Journal of Food and Agriculture, accessed September 24, 2025, https://ejfa.me/index.php/journal/article/view/1235

64. NIR Spectroscopy Analysis of Fruit Juices - AZoM, accessed September 24, 2025, https://www.azom.com/article.aspx?ArticleID=22223

65. NIR spectroscopy applied to fruits and vegetables - Pyroistech, accessed September 24, 2025, https://www.pyroistech.com/nir-spectroscopy-fruits-vegetables/

66. Hyperspectral Imaging to Characterize Table Grapes - MDPI, accessed September 24, 2025, https://www.mdpi.com/2227-9040/9/4/71

67. Application of hyperspectral imaging for prediction of physico-chemical and sensory characteristics of table grapes - Sci-Hub, accessed September 24, 2025, https://2024.sci-hub.se/1645/551c0cff2e519c568756686bba6aa9f7/baiano2012.pdf

68. A Performance Evaluation of Two Hyperspectral Imaging Systems for the Prediction of Strawberries' Pomological Traits - PubMed Central, accessed September 24, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC10781302/

69. Prediction of Strawberry Quality during Maturity Based on Hyperspectral Technology - MDPI, accessed September 24, 2025, https://www.mdpi.com/2073-4395/14/7/1450

70. (PDF) Hyperspectral image analysis for measuring ripeness of tomatoes - ResearchGate, accessed September 24, 2025, https://www.researchgate.net/publication/40142903_Hyperspectral_image_analysis_for_measuring_ripeness_of_tomatoes

71. Green Banana Maturity Classification and Quality Evaluation Using Hyperspectral Imaging, accessed September 24, 2025, https://www.researchgate.net/publication/359838712_Green_Banana_Maturity_Classification_and_Quality_Evaluation_Using_Hyperspectral_Imaging

72. Green Banana Maturity Classification and Quality Evaluation Using Hyperspectral Imaging, accessed September 24, 2025, https://ideas.repec.org/a/gam/jagris/v12y2022i4p530-d789594.html

73. Multispectral and hyperspectral imaging for monitoring banana ripeness - Conferences, accessed September 24, 2025, https://conferences.au.dk/uploads/tx_powermail/2016cigr_ageng_full_hyper_bananas_4_.pdf

74. Online Inspection of Browning in Yali Pears Using Visible-Near Infrared Spectroscopy and Interpretable Spectrogram-Based CNN Modeling, accessed September 24, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC9954006/

75. Detection of Internal Browning Disorder in 'Greensis' Pears Using a Portable Non-Destructive Instrument - MDPI, accessed September 24, 2025, https://www.mdpi.com/2311-7524/9/8/944

76. Hyperspectral near-infrared imaging for the detection of physical damages of pear - USDA ARS, accessed September 24, 2025, https://www.ars.usda.gov/ARSUserFiles/3003/LeeWH2014JFoodEng130_1.pdf

77. Identification of Damage in Pear Using Hyperspectral Imaging Technology - ResearchGate, accessed September 24, 2025, https://www.researchgate.net/publication/365999541_Identification_of_Damage_in_Pear_Using_Hyperspectral_Imaging_Technology

78. Short-Wavelength Infrared Hyperspectral Imaging and Spectral Unmixing Techniques for Detection and Distribution of Pesticide Residues on Edible Perilla Leaves - PMC, accessed September 24, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC12385282/

79. Spectroscopic and Imaging Technologies Combined with Machine Learning for Intelligent Perception of Pesticide Residues in Fruits and Vegetables - PMC, accessed September 24, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC12346310/

80. Apple Surface Pesticide Residue Detection Method Based on Hyperspectral Imaging: 8th International Conference, IScIDE 2018, Lanzhou, China, August 18–19, 2018, Revised Selected Papers - ResearchGate, accessed September 24, 2025, https://www.researchgate.net/publication/328819584_Apple_Surface_Pesticide_Residue_Detection_Method_Based_on_Hyperspectral_Imaging_8th_International_Conference_IScIDE_2018_Lanzhou_China_August_18-19_2018_Revised_Selected_Papers

81. Detecting different pesticide residues on Hami melon surface using hyperspectral imaging combined with 1D-CNN and information fusion - Frontiers, accessed September 24, 2025, https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1105601/full

82. Near-Infrared (NIR) hyperspectral imaging: theory and applications to detect fungal infection and mycotoxin contamination in food products - ResearchGate, accessed September 24, 2025, https://www.researchgate.net/publication/301348452_Near-Infrared_NIR_hyperspectral_imaging_theory_and_applications_to_detect_fungal_infection_and_mycotoxin_contamination_in_food_products

83. Detection of Mycotoxin Contamination in Foods Using Artificial Intelligence: A Review - PMC, accessed September 24, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC11507438/

84. Hyperspectral imaging in Penicillium spp. infection detection - Acta Horticulturae, accessed September 24, 2025, https://www.actahort.org/books/1360/1360_13.htm

85. Machine Learning Applied to the Detection of Mycotoxin in Food: A Systematic Review, accessed September 24, 2025, https://www.mdpi.com/2072-6651/16/6/268

86. Rapid Detection of Single- and Co-Contaminant Aflatoxins and Fumonisins in Ground Maize Using Hyperspectral Imaging Techniques - MDPI, accessed September 24, 2025, https://www.mdpi.com/2072-6651/15/7/472

87. The Food Industry's Appetite for Hyperspectral Imaging Grows - Photonics Spectra, accessed September 24, 2025, https://www.photonics.com/Articles/The_Food_Industrys_Appetite_for_Hyperspectral/a66946

88. Full article: nondestructive detection of kiwifruit textural characteristic based on near infrared hyperspectral imaging technology - Taylor & Francis Online, accessed September 24, 2025, https://www.tandfonline.com/doi/full/10.1080/10942912.2022.2098972

89. Recent Developments in Hyperspectral Imaging for Assessment of Food Quality and Safety, accessed September 24, 2025, https://www.mdpi.com/1424-8220/14/4/7248

90. Recent trends in deep learning and hyperspectral imaging for fruit quality analysis: an overview - ResearchGate, accessed September 24, 2025, https://www.researchgate.net/publication/394519679_Recent_trends_in_deep_learning_and_hyperspectral_imaging_for_fruit_quality_analysis_an_overview

91. Hyperspectral imaging for rice cultivation: Applications, methods and challenges, accessed September 24, 2025, https://www.aimspress.com/article/doi/10.3934/agrfood.2021018

92. Hyperspectral technology and machine learning models to estimate the fruit quality parameters of mango and strawberry crops | PLOS One - Research journals, accessed September 24, 2025, https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0313397

93. Low-Cost Hyperspectral Imaging System: Design and Testing for Laboratory-Based Environmental Applications, accessed September 24, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC7308922/

94. A research review on deep learning combined with hyperspectral Imaging in multiscale agricultural sensing - ResearchGate, accessed September 24, 2025, https://www.researchgate.net/publication/377883195_A_research_review_on_deep_learning_combined_with_hyperspectral_Imaging_in_multiscale_agricultural_sensing

95. Deep Learning Techniques for Hyperspectral Image Analysis in Agriculture: A Review, accessed September 24, 2025, https://www.researchgate.net/publication/370338639_Deep_Learning_Techniques_for_Hyperspectral_Image_Analysis_in_Agriculture_A_Review

96. A Review of Deep Learning in Multiscale Agricultural Sensing - MDPI, accessed September 24, 2025, https://www.mdpi.com/2072-4292/14/3/559

97. [2304.13880] Deep Learning Techniques for Hyperspectral Image Analysis in Agriculture: A Review - arXiv, accessed September 24, 2025, https://arxiv.org/abs/2304.13880

98. Four-Dimensional Hyperspectral Imaging for Fruit and Vegetable Grading - MDPI, accessed September 24, 2025, https://www.mdpi.com/2077-0472/15/15/1702

99. Evaluation of Food Quality and Safety with Hyperspectral Imaging (HSI) - ResearchGate, accessed September 24, 2025, https://www.researchgate.net/publication/284534948_Evaluation_of_Food_Quality_and_Safety_with_Hyperspectral_Imaging_HSI

100. Multisensor Fusion with Hyperspectral Imaging Data: Detection and Classification - MIT Lincoln Laboratory, accessed September 24, 2025, https://archive.ll.mit.edu/publications/journal/pdf/vol14_no1/14_1multisensorfusion.pdf


高光谱相机系列

  • 机载全光谱高光谱相机FS-6B
    机载全光谱高光谱相机FS-6B
    全波段机载高光谱成像系统的光谱范围:400-2500nm,集成VISNIR和SWIR两 套高光谱相机,其中VISNIR(400-1000nm)空间通道达1920,光谱通道达1200,光谱分辨率优于2.5nm,SWIR(900-2500nm)空间通道达640,光谱通道达250,光谱分辨率优于10nm。整套设备采用高衍射效率的透射式光栅分光模组与高灵敏度面阵列相机结合、消色差镜头、超轻机身材料满足伪装与反伪装军事领域,土壤成分检测,矿石勘测、现代精细农业林业等生态环境监测应用的需求。
  • 高光谱相机(线扫描)FS1A系列
    高光谱相机(线扫描)FS1A系列
    彩谱高光谱相机(线扫描)FS1A系列,光谱范围 900-2500nm,波长分辨率≤10nm,含≥250个光谱通道、≥640个空间通道,采用MCT探测器与斯特林制冷,帧频 200fps,接口为USB3.0,兼容spe、hdr等数据格式。广泛应用于成分识别、农产品质量分析、无损岩心扫描、文博检测等领域,拥有自主知识产权。
  • 全光谱高光谱成像仪FS-2A
    全光谱高光谱成像仪FS-2A
    FigSpec®系列成像高光谱相机采用高衍射效率的透射式光栅分光模组与高灵敏度面 阵列相机、结合内置扫描成像及辅助摄像头技术,解决了传统高光谱相机需外接推 扫成像机构及调焦复杂等难以操作的问题。可与标准C接口的成像镜头直接集成实现光谱影像的快速采集。
  • 智能机载高光谱机巢系统
    智能机载高光谱机巢系统
    在国家大力推进生态环境监测网数智化转型的战略背景下,生态环境部发布的《国家生态环境监测网络数智化转型方案》明确提出,要以无人运维、智能采样、黑灯实验室、立体遥测为标志,在重点区域率先探索新一代监测网络。彩谱科技积极响应政策号召,凭借深厚的技术积累与敏锐的市场洞察力,重磅推出智能机载高光谱机巢系统,以创新科技赋能生态环境监测,为行业带来全新解决方案。
  • 工业在线高速短波红外高光谱相机
    工业在线高速短波红外高光谱相机
    FS-19S/19M/19X是彩谱专为工业分选领域推出的在线高速短波红外高光谱相机,其高频率特点满足工业领域对扫描速度的要求,坚固的结构和紧凑的机身也使其安装场景更加灵活。
  • 日光诱导叶绿素荧光(SIF)高光谱测量系统
    日光诱导叶绿素荧光(SIF)高光谱测量系统
    彩谱科技推出的DS-700A、DS-700C和DS-26D三款便携式分光测色仪,满足各行业品质控制需求,具有极高的精度和稳定性,且具有智能校准、数据管理系统等创新功能,适合多种工业场景。
  • FS-500/600/620多光谱相机
    FS-500/600/620多光谱相机
    FS-500由4通道多光谱和1个RGB组合,RGB有效像素高达830万。FS-600具有6通道多光谱,有效像素可以达到130万像素。FS-620由4通道多光谱、1个RGB和1通道热红外LWIR组合。
  • FS-9100/9200/9300手持式地物光谱仪
    FS-9100/9200/9300手持式地物光谱仪
    FS-9100常规手持式地物光谱仪,波长范围为300~1100 nm,具有性价比高,测量快速、准确,操作简单等特点,适用于植被研究、林业科学、农业调查等各领域应用。FS-9200除了常规手持式地物光谱仪的功能外,波长范围拓宽至300~1700nm,电池续航时间更久,还可以用于水体研究、气候变化研究和生态系统中,用于监测水体的质量和变化,以及研究气候变化对生态系统的影响。FS-9300地物波谱仪波长范围为300~2500nm,可搭配瞄准式手枪、接触式手柄等配件使用,拥有更多功能,适用于更多场景。
  • VIS-NIR-SWIR高光谱分析系统
    VIS-NIR-SWIR高光谱分析系统
    VIS-NIR-SWIR(400-1700nm)高光谱分析系统单传感器光路实现(400-1700nm)高光谱探测;光谱分辨率小于18nm ;空间分辨率640;
  • 无人机高光谱激光雷达测量系统 FS64-UCR
    无人机高光谱激光雷达测量系统 FS64-UCR
    FS60-UCR系列无人机高光谱激光雷达测量系统是一款多功能无人机检测设备,集激光雷达和高光谱成像为一体,获得激光雷达和高光谱图像数据。
  • 便携式高光谱相机FSIQ系列
    便携式高光谱相机FSIQ系列
    FigSpec®FSIQ系列便携式高光谱相机是一款内推扫高光谱相机,波长范围400-1700nm,光谱分辨率(FWHM)可达2.5nm,空间分辨率高达1920*1920,光谱通道数量高达1200,通过5寸触摸屏显示和操作,分辨率1280*720主要功能工作模式:高精度成像测量模式、PC操控模式、线扫描模式用户调整:用户可以对曝光时间,合并方式,ROI区域进行
  • 云台高光谱测量系统
    云台高光谱测量系统
    FS系列云台高光谱测量系统是结合高光谱相机和云台设备的测量系统,可实现对拍摄区域的实时监控,支持自动扫描,网络连接。可应用于河道、湖泊、林业、农业、塔基等基于高光谱技术的分析检测领域产品特点光谱范围:390-1010nm光谱通道数:1200光谱分辨率:2.5nm云台水平范围:360°云台垂直范围:正90°~负90°网络连接:支持
  • FS-50系列多光谱相机
    FS-50系列多光谱相机
    FigSpec FS-50系列是彩谱科技公司推出的新一代无人机载多光谱相机,适配大疆M350/M300RTK飞行平台,具有30-180个光谱通道,2K分辨率。 满足精准农业、军事国防和国土安全、灾害防治林业监测、河湖生态、目标识别等多种行业应用需求。一、产品特点●超高光
  • 高光谱相机(线扫描) FS1X系列
    高光谱相机(线扫描) FS1X系列
    FigSpec®FS1X系列高光谱相机包含可见光(400-700nm)、可见光近红外(400-1000nm)、可见光近红外短波红外(400-1700nm)、短波红外(900-1700nm)、短波红外(1400-2500nm)5种光谱区域,广泛应用于印刷,纺织等各种工业制品的表面颜色纹理检测(颜色测量单像素重复性可达dE*ab<0.1),成分识别,物质鉴别,机器视觉,农产品品质等领域。
  • 成像高光谱相机 FS2X系列
    成像高光谱相机 FS2X系列
    FigSpec®系列成像高光谱相机采用高衍射效率的透射式光栅分光模组与高灵敏度面阵列相机、结合内置扫描成像及辅助摄像头技术,解决了传统高光谱相机需外接推扫成像机构及调焦复杂等难以操作的问题。可与标准C接口的成像镜头或显微镜直接集成,实现光谱影像的快速采集。可见光/近红外:· 光谱范围:400-1000

Copyright © 2023 彩谱科技(浙江)有限公司 All Rights Reserved. ©️ 版权所有 浙ICP备2021027346号-7

  • 首页
  • 产品
  • 案例
  • 联系
  • 顶部